
Appendix – Notes taken from the Udemy course “Pragmatic System Design” by Alexey Soshin

Product Goals (Functional Requirements)
 What the product does
 Product's main features
 Use cases
 Examples:

o External interfaces (API)
o Authentication
o Payments
o Analytics
o Recommendations
o Search
o Cart
o Feed
o User Data
o Types of Users (Driver/Rider in Uber)

Technical Goals (Non-Functional Requirements)

 How the product works
 User expectation
 Get realistic metrics

o Peak active users
o Total number of users
o Transaction/User/Day

 Mandatory/Desirable goals:
o Performance
o Reliable
o Scalable
o Consistent
o Latency
o Volume
o Secure
o Throughput (Calculated request/s)

Protocols
 TCP (Transmission Control Protocol)

o Reliable
 Receiver either confirms packets were received or times out and sender sends

again
o Ordered

 Packets are numbered and makes sure it's received in order
o Error-checked

 Checksum
o Slower than some other protocols
o Types

 WebSockets
 Messaging service

 Duplex protocol
 More efficient than polling with HTTP
 Connection only established once
 Real time message delivery to the client
 No defined protocols like HTTP
 Load Balancers may have troubles as some are meant for short

connections
 HTTP

 Methods
 GET

 Gets entity
 POST

 Create new entity
 Sometimes used instead of GET since GET has limit on

length
 PUT

 Update entity
 PATCH

 Partial update (rarely used)
 DELETE

 Deleting entity
 Types

 REST
 Use HTTP methods properly
 May pass in query parameters like pagination
 Use PUT as Boolean changer, use POST for else

 gRPC (g Remote Procedure Call)
 Doesn’t support browsers
 App and server may use different call parameters
 Parameters converted via stubs
 Server reconverts call via stubs to how it understands it

and executes the function
 Sends back stub and client reconverts return using stub
 Put RPC and language into the generator and you get

your stub
 Does not have any business logic

 GraphQL (Graph Query Language)
 Takes care of REST's over fetching and under fetching

problem
 May ask the server for user's name on REST and

get back name, birthday, age, etc.
 May ask the server for user's friends on REST

and get back the list of IDs of friends, where we
need to send REST request for each friend ID

 Request and responses are in JSON
 Let's you define the fields to return
 Let's you define which nested entities to return
 Great for reporting systems or mobile apps

 Results are less cacheable

 UDP (User Datagram Protocol)
o Less reliable
o Unordered
o Fast
o Used for something that updates frequently (Constant stream of data)
o Example of usage

 Monitoring metrics
 Video Streaming (Twitch)
 Gaming

 Choosing between the protocols

o External API
REST Yes

WebSockets Yes

gRPC No

GraphQL Yes

UDP Yes

Long Polling Yes
o Bi-Directional

REST No

WebSockets Yes

gRPC No

GraphQL No

UDP Yes

Long Polling Somewhat
o High Throughput

REST No

WebSockets Yes

gRPC Yes

GraphQL No

UDP Yes

Long Polling No
o Web Browser Support

REST Yes

WebSockets Yes

gRPC No

GraphQL Yes

UDP No

Long Polling Yes

Load Balancer

 Either a physical machine or software
 Very reliable
 Distributes loads by:

o Round Robin
 Easy to implement
 Even number of connections
 Load may not be distributed evenly

o Least connection
o Resource based
o Weighted variants of the above
o Random

 Types
o Layer 4

 Transport layer
 Access to TCP or UDP, IP, Port

o Layer 7
 Application layer
 Has everything layer 4 has plus
 HTTP headers, cookies, payload

CDN
 Cache for static assets
 Decreases latency
 Increases complexity
 These assets shouldn't change too often
 Often stores:

o Images
o HTML
o CSS
o JavaScript

 Types
o Push

 Pushed to all the CDNs when uploaded to the server
 Good when you don't have much static content
 Slow and expensive for large amount

o Pull
 Lazy
 Slow for first user
 Lots of static content

Cache

 Types of strategies
o Cache aside

 Most common
 App has access to both cache and storage
 If in cache, use case, if not, go to the storage
 Good since it caches only what's needed
 Bad since cache misses are expensive
 Stale data

o Read through
 App always interacts with cache
 If not in cache, cache will fetch from data, save, then return to app
 Cache misses are expensive
 Stale data

o Write through
 Updates cache whenever app updates data, then cache updates the storage
 Most up-to-date data
 Writes are expensive
 May write data to cache that no one needs

o Write behind
 Similar to write through but cache waits until timeout
 Writes are cheap
 Reduces load on storage
 Poor reliability
 Lack of consistency as storage is updated long after write

 Eviction Policies
o LRU

 Very efficient
 If lots of new keys are requested at once, popular keys may be evicted

o LFU
 More cost
 Key counter

 Redis
o In-Memory
o Key-Value store
o Limited by RAM (500GB to 1TB)
o Supports 100k+ requests per second per node
o No native support for JSON
o Time to Live (TTL) support
o Stores data to disk but can lose recent data

Queues

 Types
o Message queue

 Pusher and Consumer
 For payment, order service may send payment data to queue and queue

chooses a payment service
 Retry to another payment service if one payment service is busy
 Delivery exactly once
 Messages can arrive out of order

o Pub/Sub (Kafka)

 Notify other services on what happened (payment success/fail)
 Delivery at least once
 Messages are always in order

 Kafka
o Pub/Sub
o Higher throughput (100k+ events per second)
o Poor latency
o If there are more consumers than partitions, some consumers won't receive any events
o Each consumer reads data at own pace (Slow consumer don't affect queue

performance)

Concurrency
 Processes

o Interprocess communication
 File

 Multiple processes can access file at the same time
 Signal

 Send signal to process to do something
 Socket

 Client process connects to 8080, Server process listens to 8080
 Pipe

 Output of one process is the input of another process which uses that to
output

 Thread
o Light weight than process
o If CPU and OS can handle more threads, it can run multiple threads at the same time
o Making new thread is a bit slow
o Threads can share the same resources

 Use locks to prevent two threads writing to one resource at the same time
o Thread pool

Database
 ACID

o Atomicity - If there's a failure in the middle of the code, revert the state to original
o Consistency - Database obeys the constraints and cannot have an impossible state
o Isolation - Until one transaction is committed, other users cannot see the update
o Durability - Data is safe after commit

 Sharding (Horizontal Scaling)
o Shard to make Db smaller and manageable
o Examples:

 Gio-sharding (Tenant)
 Easy to add new region/shard
 Uneven distribution

 Hash based sharding
 Even distribution
 Adding new shards is difficult
 Weaker consistency (no foreign keys)
 Some weakness fixed by shard locator but increases complexity

 Use hash range to improve adding shard (resharding)
 Partitioning (Horizontal Scaling)

o Break one large table to multiple tables by:
 List of values (Placed, In-progress, Completed orders)

 Smaller tables = Faster queries
 Uneven data distribution
 Must move data between tables

 Range of dates
 Smaller tables = Faster queries
 Great for deleting old data
 Uneven data

 Hash of key
 Even distribution of keys
 Difficult to query range of data

 NoSQL
o CAP Theorem

 Consistency - All nodes see the same data, may not be able to write
 Availability - All nodes are able to write, may not see the same data
 Partition Tolerance - Not an option, it's a must

